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ON CONTROL OF TIME FOR REACHING A DOMAIN BY RANDOM MOTION * 

V. B. KOLMANOVSKII and T. L. MAIZENBERG 

The problem is examined of maximizing the time for reaching the boundaries of the 
domain of a dynamic system moving under constant random perturbations of Gaussian 
white noise type and under pulsed action simulated by a Poisson process. Certain 
properties of the maximum time and of the optimal control are studied. The control- 
led motion of a rigid body acted on by random perturbing moments relative to the 
center of mass is examined as an example. The presence of random perturbations caus- 
es the kinetic moment of the rigid body to take arbitrarily large values. The pur- 
pose of controlling the rigid body's motion is to maximize the time for the kinetic 
moment to achieve some limit admissible value. The problem of retaining the system 
within a specified domain of phase coordinates has been taken up in a number of 
papers. In /li it was shown that certain questions on the motion control of an arti- 
ficial satellite on synchronous orbits reduce to the maximization of the probability 
of retaining the system within a specified domain during a prescribed time interval. 
Another example of similar kind is connected with the working of water storage basins 
mentioned in /2/. 

1, Consider the controlled stochastic system 

ax@) = Ib (2, 0)) + c (5 Q)) u (5 @))I A + (J (x, Q)) d 5 0) + (1.1) 

f (5 (0) d”rl O), t > 0, 2 (0) = 5 

Here x(t) is a vector in the n-dimensional Euclidean space E,,; E(t) is an m-dimensional 
Wiener process; vector q(t)=(?)', . . . . f); q’(t) (i = I,..., r) is a homogeneous Poisson process 
with parameter A-1 and all the $ are independent and in aggregate do not depend on processg(t); 
control .u(z) is a vector with values in a closed bounded convex set u C En b, c (z), a (5) and 

f(z) are certain deterministic matrices. Equation (1.1) should be understood in the I& 
sense /3/. The latter paper also gave sufficient existence and uniqueness conditions for solu- 
tions of similar equations. Such conditions are, for example, a local Lipschitz condition for 
matrices c,U and f and for the components of vectors b and z~, as well as that their growth 
at infinity is no more than linear. Under such assumptions on the smoothness of the coeffici- 
ents Eq. (1) with any initial condition s(0) = SEE,, has with unit probability a unique right- 
continuous solution free of discontinuities of the second kind, defining a homogeneous Markov 
process X. The last summand in (1.1) then characterizes shock perturbations. 

Let G be a bounded domain in E,with a sufficiently smooth boundary r. The control 
u(s)E u ensuring the existence of a solution of Eq. (1.1) with any initial condition x (0) E 
G up to the instant of exist of this solution from G is said to be admissible. The class of 
admissible controls is denoted U,,. In order to emphasize the dependence of process (1.1) on 
control u we shall sometimes denote it X, and the corresponding trajectory by 5, (t). Let 
7, = z,(G)be the first exist instant of process X, from G /4/, u E iii,. We set 

V,(z) = nl,z,, V,(z)= sup V,(z) 
tlEl-8 

Here M, is the symbol for the mean computed under the condition that the initial state of 
the process is an arbitrary point x E G. The problem is to find a control u0 under which 
the equality 

V,,(x)= MrZ,;= VO(l) (1.2) 

holds for any SEG. Sufficient conditions for solving the optimal problem indicated can be 
stated in terms of the Bellman equation corresponding to system (1.1). By L, we denote the 
generating operator /4/ of process X,,in space Ge (&A equal to /3/ 

W (4 = + 2 ai’ (4 V_~J + Cc (4 1~ (3 + b (4)’ V, + t [V (x + f(x) ei) - v (x)] h, 

i, j=l is1 

(1.3) 

x = (xl, . .) I”), V (4 E C2 (4,) 
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Here the prime denotes transposition, f'X is a vector with components dly II dz’,a” is an element 
of matrix a W = c (z)0' (z), ei is an r-dimensional vector whose i-th component equals one while 
the rest are zero, li;il) is a matrix with elements cJ"L' ! axidS'. By D (G) we denote the space 
of functions twice continuously differentiable in G and continuous and bounded everywhere in 
B,, . 

Lemma 1, Assume that d control rr,(.r)f u0 and a nonnegative function I7 (z) CI D (G) sat- 
isfying the conditions 

&,v (5) -:- 1 = 0, &v(x) -t 1 < 0, Vt E G. u E U (1.4) 

V (J.) :-: 0, .z c G 

have been found. Then u,, is the optimal control and V is the Bellman function. 
The proof in case VEC~(E,) is carried out by applying Ita's formula /3/ to function V at 

the instant Tic (t) = min (a,,, t) I with a subsequent passage to the limit as L-PCXX and the use of 
relations (1.4), which is consistent with the proof of the analogous statements in /5,6/. Let 
us explain this in more detail. From Its's formula and the first two of conditions (1.4) 
it follows that 

T%j!t) 
nfsv (2. (r"(t)) -- 1' (2) -y A$ 1 L”V (z (s)ds)< - M.&T,, (t) 

il 

for any admissible control U. Consequently, 

&lNzli (t) < -- .M,3; (3 {T,(r)) + I' (2) 6 "sUp,,;t‘ (X) 

The sequence r,,!(t) is nonnegative and monotonically nondecreasing in t *Therefore, by Lebesgue's 
theorem it is possible to pass to the limit as t+ u under the integral sign. Doing this, we 
get that 

"lI&< zs"p,&i'(s) 

for any admissible control E , From this estimate It8's formula and the first of relations 
(1.4) we conclude that 

dl,Vl' (.I.($.))- 1‘ (J) :m .- I' (2) = - M&" 

Similarly, using the second of relations (1.4), we have 

-'- V(+) < --M, (r,,) 
for any admissible control U. BY the same token we have established the optimality of con- 

trol uo when v(z) EC*(&). In the general case it is sufficient to approximate VEL)(G) by a 
uniformly bounded sequence of functions Vi ES?(&) coinciding with v in some subdomain Gig E, 

Gi : G, and to apply It8's formula to these functions at instant miil(~~,(Gi),~)~ 
The following conditions in terms of the coefficients of (l,l.), under which the stated 

means are finite, follows from /‘J,S/. 
Lemma 2, Assume that for some i = f,... at least one of the conditions 
1) aii(r)>n>O, 
2) hi (2~) > in > 0 (or hi (I) I i - h < 0), where a and h are certain constants and h'(r) is 

the i-th component of vector 

h(J) = b (I) --I- C (5) 1t (.i.) + j,, i (z) LA% 

is fulfilled for all z from some neighborhood of the closure I? of set G. Then the inequal- 
ity 

P, {T,‘> 1) ,, ctY'l* rs E G. t ;, 0 
(1.5) 

is valid. Here P, is the probability of the event within the braces under the condition that 
the initial state z (0) X‘ while the positive constants c and v are determined by the para- 
meters of the original control problem and are independent of both x and U. 

w rewrite relations (1.4) as the boundary-value problem 

sIIp~,F;P.J+.i~~ (27) -= -1. Z E G (1.6) 

V(X) : 0, zZ?G 

At first we derive the existence conditions for the solution of the equation obtained from 
(1.6) if we omit the supremum sign in the first relation. As usual /9,10/ C(h+a)(c) denotes 
the space of functions k times differentiable in I;;, whose It-th derivatives satisfy a Rb'lder 
condition with index a~ (0 < a .< i), Also, we take the boundary r to be of class C"* if in 
some neighborhoodwof each of its points the boundary r can be defined by an equation of form 
2 = 1J, (s', . . ., 2’-1, Z’fi , . ., .z”). where 11, E P+a (W n G). 

Lemma 3, Assume that the elements of matrices s(z) and f(z) satisfy a Lipschitzcondi- 
I t.ion2.n (7, the components of vector b,(s) = b(z) +c(.z)u(z) are measurable and bounded, and the 

boundary rfZ Ce+*. In addition, suppose that a constant CL> 0 has been found such that 

*,$iloi' @)Yi?& > II jlYi 

for any real. numbers Yx, . . . . Y, and for all z. Then a unique almost-everywhere solution of 
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the problem (0<8< 1) 

L,V (x) = --1, x E G (1.7) 

V (x) = 0, z ‘i? G 

exists in the class B of functions V(I)= C1+b(G) having a square-integrable second derivat- 
ive in G. We remark that a number of properties of operators L and V have been established 
in /ll/. 

Proof, On the basis of /12/ the boundary-value problem (1.7) has a unique solution 

V (2) E WP,~' (c) with p > n, and 

V(z) = MST,,, IEG (1.8) 
Here Wi,O(G) is the space of measurable functions having generalized derivatives in the sense 

of Sobolev of up to second order, inclusive, summable on G to degree p, and vanishing for 
z Z G. Let D be the differential part of operator (1.3). By o(z)we denote a solution of the 

boundary-value problem 

Do(z)-b(z)= - i - i; 4' (I. + f(z) eJ, zfmc 
(1.9) 

j=1 

0 (2) = 0, z E G, a=?.+...-IA,>0 

From (1.5) follows the uniform boundedness in ZEG of the functions MX?‘. Hence from (1.8) 
it follows that the right hand side of (1.9) is measurable and bounded in .z E G. Hence /9/, 

boundary-value problem (1.9) has the unique solution O(Z) in class B. This solution o(z) be- 
longs as well to Wp,oa (G) . In addition, in class W p,c(G) the function V(I) too serves as a 
solution of problem (1.9). The equality O(Z)= V(Z) is valid because the solution of problem 
(1.9) is unique in class 

Lemma 3 has been provr$O*(G)' 

Hence, the solution V(z) of problem (1.7) belongs to 

B. . 
We take an arbitrary measurable function u1 = a(x) with values in set U, under the 

sumption that the hypotheses of Lemma 3 are fulfilled. By V,(z) we denote a solution of 
equation &,,Vr(x) = -1 for almost all ZE G with boundary condition V,(z)= 0, x_iG. We 
a function ~~(2) from the relation 

sup,,ri U'C' (x)V, = Up' (x)c' (5)VZX 

class 

as- 

the 

find 

It is well known /13/ that vector up(x) can be defined in such a way that its components are 
bounded measurable functions. Proceeding by induction, we construct the sequences USE U 

and Vi(X)E B satisfying the conditions 

-&Vi(x) = -1, x=G Vi(x) = 0, x CG (1.10) 

, , ’ I 

supueuu c (x)V,, = ui+1(x)c (x)V,, 

for all i>l. We remark that the successive approximation procedure presented was applied 
in a number of papers (see /6,13/, for instance) for other stochastic system control problems. 
We set m = Vi+, - V*. From relations (1.10) follow 

L u~+~‘J) (4 < 0, x E G o(z)=O, xFG (1.111 

Hence by virtue of /12/ %fl 

m(x) = - M, j Ly+lO(xU*+l(t))dt > 0 
II 

Then 
vi+l (5) > Vi (X) > 0 (1.12) 

Lemma 4, Let the hypotheses of Lemma 3 be fulfilled. Then as i+ 00 the sequence 

(V,, V,,) converges to the function (V,, V,,) uniformly in XEG. Function V,(x)=B. The 

second derivatives of functions V, converge weakly to the second derivatives of function V,(x) 

in the space B, of functions square-integrable in G. 
Proof, From formula (1.8) with u=ui and (1.5) it follows that 

SUPi xEB Vi (z)< c < co 
(1.13) 

Now we form a sequence of functions Oi(Z), the solutions of boundary-value problem (1.9) with 
v= vi. Because of the uniqueness in class E (see Lemma 3) of the solution of problem (1.9) 

we have Oi (2) = Vi (x). Hence, on the basis of /9/, the estimate 

SUP~,=~~ I avi/ax I G CC m 
follows from (1.13). Hence from (1.12) it follows that Vi(z)-converges uniformly to V,(z). 

Therefore (for example, see Sect. 7 in /13/j, @i(z) converges, together with its first deriva- 

tives, uniformly to function V,,(Z)EB, while the second derivatives of Oi(z) converge weakly 

in B, to the second derivatives of function V, (I). Hence the validity of Lemma 4 follows from 

the equality o,(z) = Vi(Z), 
We set u0 = uO(x) if 
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Let us show that v,(Z) is almost everywhere a solution of the Bellman Eq. (1.6). Indeed, we 
write (1.3) as 

L,, v (2) = LTi (x) + U' (z)c' (5)'vz 

using (l.lO), for any i we obtain 

l(5) ;= LV, (x) i- 1 + supuqu u'(5)c' (2)Voz> (1.14) 

L (vlJ (%) - vi (2)) + Ui’ C31c’ t5) (Vex ($1 - g*x (z)) 

Let i-too. Then the first parentheses in the right hand side of (1.141 tends to zero 
weakly in H,,. while the second, uniformly. Hence it follows that I(z)> 0 for almost all x. 
Further, making use of the obvious relation 

Ug' (Z)C' (X)F'i\- (l) < Ui+f'(Z)C' (2)vi* (2) 

and making simple manipulations, we find that 

As before, we conclude that the right hand side of (1.15) converges weakly to zero. BY the 
same token we have established that L(X) equals zero almost everywhere. Thus, boundary-value 
problem (1.6) always has a solution v, (x) E B. In reality, however, as follows from /13/, 
function V,, is of class C"+a (G) for some a and &V,(s) = -1 is valid for all zEG. 
The last assertion stems from the Hb'lder-continuity of the expression uO' (z)c' (s)V,,. Speaking 
precisely, the conclusion that V, (s)is of class Cz+"(G) can be obtained from /13/ in the foll- 
owing manner. ByW we denote a solution of the boundary-value problem 

SUPU DB- (z) r* (z), z E G (1.16) 

1st. (zj = 0. z T G 

Here the known function r,(x) is determined by the formula 

ro (J) = - 1 - is1 hi iv, (r i f {x) ei - v. (x)] (1.17) 

We now note that the solution W(z) of this boundary-value problem, by virtue of /13/, exists 
uniquely and is of class czca . In addition, we have W = v, by virtue of (1.17), (1.6) and 
the uniqueness in R of the solution of problem (1.16). Hence V,, (z) E CZ+a ((7). By Lemma 1 
the inequality 

JJ,r, (G) :\ 1'" (2) 

holds for any admissible control u(z). 
In the general case we can assert that an admissible control exists under which the error 

in the determination of the optimal value of the performance functional does not exceed a 
specified t‘ j 0. As a matter Of fact, let E/8 be given. Prom /14/ (see the proofs cf 
Lemmas 2.1 and 2.2) it follows that we can always find a vector-valued function u(x) with 
components satisfying a Lipschitz condition, such that for all * 

u* (-T)c' jr)1 I)I- :z UO' (Z)E' (r)V,, - F 
(1.18) 

where v,(z) is the solution of problem (1.6). Using (1.18) we obtain 

L,,lrO (X) I>- -1 - E IL.191 

Using Ito^'s formula applied to I',, from (1.19) we find 

M%Z,, > l',(J) (1 + &)-I (L.20) 

Noting that function r,(r) is bounded, we establish, in view of (1.201, that the difference 
j llf,T, - V, (I$ ( is of the order of E.. The uniqueness of the solution of the Bellman equa- 
tion can be established by making use of the preceding arguments. Indeed, let V, (.c) and V2 (sj 
be two solutions of problem (1.6), where V,(z)< VP(z) for some x e! G. Fran what has been said 
follows the existence of an admissible control' U- U(Z) such that 

v, (X)(1 -i b,-5 < JJ,Z,, (C) < v, (2) (1.21) 

Because e>O is arbitrary the statement to be proved follows from inequality (1.21). Thus, 
we have proved the following: 

theorem, Assume that the hypotheses of Lemma 3 are fulfilled, Then the boundary- 
value problem (1.61 has the unique solution 17"(x) in class P+,(,_). 1f z+(z) defined bY 
formula (1.61 is an admissible control, then the functions uo(z) and t,(x) represent the 
optimal solution of the control problem for system (1.1) with performance index (1.2). In 
the general case an admissible control always 'exists, under which the performance index's op- 
timal value can be approached to an arbitrary degree of accuracy. 

2, Example, We consider the controlled motion of a rigid. body relative to the center 
of mass under random perturbations of white noise type. By x we denote the kinetic moment of 



On control of time for reaching a domain 11 

the rigid body, by ai the moment of inertia, and by Ji the projections of vector 2 onto the 

principal central axes of inertia of the body. In the projections onto the axes mentioned the 
equations of motion have the form /15/ 

II' = +t*:< (aa - (1:J((1*(13)-~ + U1 1 oh' (123) (2.1) 

Here (123) signifies that the equations for z2 and z3 are obtained from (2.1) by a cyclic per- 
mutationof subscripts,theconstant a>O, and the control is subject to the constraint 

1 u 1 = ; ui2 \i ba, 
(2.2) 

b>O 
i-1 

The mechanical sense of constraint(2.2) is that the controlling moment's action on the rigid 

body is the same in all directions /16/. It is required, by choosing the control, to maximize 
the mean of the first instant at which 

r(U) of the kinetic mon!e~~= 

r, r>O, under the condition that the modulus of 

the initial value is less than r, i.e., I z (0) I < r. In this case 
Eq. (1.6) has the form F(z) ;: 0, If I= r 

(2.3) 

The function 

(2.4) 

(2.5) 

is a solution of this boundary-value problem. We substitute (2.4) into (2.3) and we find the 

control % (5) maximizing the right hand side of (2.3). When .z#O we have 

110 (5) = -bs 1 I I-1 (2.6) 
When t=O function V,(z) has a derivative equal to zero and, therefore, the control is not 

defined at L.=o. However, let us show that 

1) if z(O)#O, then under control (2.6) the probability that system (2.1) attains the 

state z=O before it reaches the surface lzl=r equals zero; 

2) if z (0) = 0, then under any admissible control the system (2.1) leaves the point x=0 

in an arbitrarily small admissible time, and, consequently, in view of l), the system with 
probability one reaches the surface I.zl= r before it can return once again to the origin. 

From statements 1) and 2) it follows that the control's value at .z= 0 plays no role at 

all in the questions being examined. On the basis of 1) we take a number E>O and we compute 

the probability o(z) that system (2.1) reaches the surface [~(=a earlier than I.zJ=r under 

control (2.6) and initial condition z(O) = 2. Having written for o(z) the appropriate Dirichlet 

problem, we obtain 

o(X)=,~,z(S)& [i r(s)ria]-L, O<lzl<r (2.7) 
x e 

where function z(t) is specified by equality (2.5). From (2.5) and (2.7) we conclude that 

0 (z) -- 0 as e-0. 

We now prove statement 2). Let u(z) be any admissible control and rU(e) be the instant at 

which system (2.1) first leaves the sphere II~\(E under control Y and zero initial condition. 
On the basis of /8/ (also see Lemma 2 of the present paper) M%(e) < m. Therefore, 

Consequently, in view of (2.4) and the definition of X(E) 

MT,@) < 26a [ Z(L)dli z-1 (S)dS 
0 0 

The validity of statement 2) follows from (2.5) and the arbitrariness of B. Thus, we have 

established that in the rigid body motion control problem (2.1) the optimal control is given 

by formula (2.6) and the corresponding time by formula (2.4). 
In the present paper we have studied certain control problems for systems being acted on 

by Gaussian and Poisson perturbations. Various aspects of the control of a diffusion systems 

are dealt with in /17,18/. 
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